

DOE Working Group Meeting

11/06/2007

Renewable Hydrogen Production Using Sugars and Sugar Alcohols

- Problem: Need to develop renewable hydrogen production technologies using diverse feedstocks
- Description: The BioForming[™] process uses aqueous phase reforming to cost effectively produce hydrogen from a range of feedstocks, including glycerol and sugars. The key breakthrough is a proprietary catalyst that operates in the aqueous phase and has high hydrogen selectivity at low temperature.
- Impact: Sugars and sugar alcohols are capable of producing hydrogen for \$2 to \$4/gge.
- IP Position: Exclusive worldwide licenses have been granted, multiple new patent applications placed, and solid trade secret position established.
- Status: A pilot plant for hydrogen production from glycerol is in operation and one using sugar is being developed as part of a DOE funded program.

10 kg/day Hydrogen Pilot Plant

BioForming Catalyst Development

Measure of Productivity: Space Time Yield

(moles reactant per second per cc of reaction volume)

BILIWG Metrics

	Current Status	2017 Metrics
WHSV	1 - 2	5 - 10
Feed Concentration	30%	50%
Feed Conversion	100%	100%
Hydrogen Yield	> 50%	> 80%

 2017 Metrics represents one set of catalyst characteristics that enables the Virent APR process to meet the DOE Hydrogen Cost Target

Sugar to Hydrogen PFD

T-101 GLUCOSE SYRUP STORAGE TANK

P FEED/EFFLUENT EXCHANGER

E-201

C-201 H2 RECYCLE COMPRESSOR E-301 PRODUCT COOLER V-301 SEPARATOR V-302 DISENGAGER G-401 PRESSURE SWING ABSORBER

P-101 FEED PUMP R-100 APR REACTOR SYSTEM

R-203 COMBUSTOR E-202 AIR TO AIR EXCHANGER B-201 COMBUSTION AIR BLOWER

Equipment Costing (PFD Level)

- Aspen Simulations
 - Current Data
 - Sensitivity Analysis on Process Efficiency
- Initial Sizing Estimates
 - ~3 Line specs
 - . Equipment Sizing
 - Utility Utilization
- Costing based on standard graphs/charts with appropriate materials of construction and pressure considerations
- Equipment costing cross-checked utilizing price quotes for current equipment and vendor quotes
- Multiple Third Party Verification

H2A Inputs-Capital Equipment

- Uninstalled APR Reforming Equipment (Capital Investment)
 - Purchased Equipment
 - Skid Fabrication
 - Equipment Delivery and Skid Mounting
 - Instruments and Controls
 - Piping
 - Learning Curve factor (@ 5000 Units)
 - Forecourt Specific Assumptions 2005 (DTI Study)
- Installation Factor = 1.1 (H2A)

Virent APR 2017- H2A

Production Unit H2 Efficiency	70.4%	Aspen Model
Virent Package	\$ 791,000	Installed Cost
Product Handling Package	\$ 833,000	H2A
Indirect Depreciable	\$ 297,000	H2A
Feedstock (LHV 14.1 MJ/Kg)	12.2 kg / kg H2	Aspen Model
Other Raw Materials	~ \$0.011 / kg H2	Aspen Model / H2A
Utilities	\$13,400 / yr	Aspen Model / H2A

2017 Cost Breakdown

Specific Item Cost Calculation				
Cost Component	Cost Contribution (\$/kg)	Percentage of H2 Cost		
Capital Costs	\$0.727	24.0%		
Decommissioning Costs	\$0.000	0.0%		
Fixed O&M	\$0.415	13.7%		
Feedstock Costs	\$1.834	60.6%		
Other Raw Material Costs	\$0.011	0.3%		
Byproduct Credits	\$0.000	0.0%		
Other Variable Costs (including utilities)	\$0.040	1.3%		

Cost Breakdown

Uncertainties

- Cost of Feedstock (> 60% of Total Cost Stack)
 - Developing a feedstock flexible process
 - Process design maximizes feedstock utilization
- Catalyst Performance Metrics
 - Hydrogen Yield
 - Feed Concentration
 - Reactor and Catalyst Productivity
- Impact of Mass Production
 - Utilize learning curve methodology
 - Continue to investigate other approaches
- Capital Cost Estimation
 - Incorporate Industry Best Practices
 - Independent 3rd Party Review
 - Utilize Vendor Cost Estimates where Possible

Response to Reviewer Comments

- Not much has been accomplished.
 - Periods of limited funding have resulted in delays to the original project plan
 - Technology Progress
 - . 10 X reduction in hydrogen cost
 - . 700 X scale-up reactor demonstrated
- Performance is behind conventional reforming technology
 - Reforming of oxygenated hydrocarbons like glycerol and glucose using conventional technology is not favorable.
 - Conventional reforming has been in existence since the early 1900's- APR was discovered in 2002.

Response to Reviewer Comments

- ADM is the only company interested, potentially to use a thermochemical route for corn sugar.
 - Virent has several strategic investors, industrial collaborators, and other government agencies interested in using sugar as a feedstock for hydrogen production.
- No information on the commercial availability of catalyst.
 - Virent is developing the catalysts for the aqueous phase reforming of carbohydrates. Catalysts will be scaled and manufactured by supplier/partners using Virent's recipe.